Part Number Hot Search : 
TOP250F 222MR UPA103B MAC210A6 T310C1 BYW29 6PF30 RH5VT33C
Product Description
Full Text Search
 

To Download GA20TS60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  3/20/98 ga200ts60u "half-bridge" igbt int-a-pak features v ces = 600 v v ce (on) typ. = 1.8v @v ge = 15v , i c = 200a parameter typ. max. units r q jc thermal resistance, junction-to-case - igbt 0.20 r q jc thermal resistance, junction-to-case - diode 0.35 c/w r q cs thermal resistance, case-to-sink - module 0.1 mounting torque, case-to-heatsink 4.0 n m mounting torque, case-to-terminal 1, 2 & 3 ? 3.0 weight of module 200 g thermal / mechanical characteristics ultra-fast tm speed igbt absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 200 i cm pulsed collector current ? 400 a i lm peak switching current ? 400 i fm peak diode forward current 400 v ge gate-to-emitter voltage 20 v v isol rms isolation voltage, any terminal to case, t = 1 min 2500 p d @ t c = 25c maximum power dissipation 625 w p d @ t c = 85c maximum power dissipation 325 t j operating junction temperature range -40 to +150 c t stg storage temperature range -40 to +125 ? ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode ? very low conduction and switching losses ? hexfred ? antiparallel diodes with ultra- soft recovery ? industry standard package ? ul approved benefits ? increased operating efficiency ? direct mounting to heatsink ? performance optimized for power conversion: ups, smps, welding ? lower emi, requires less snubbing preliminary ? generation 4 igbt technology . www.irf.com 1 pd -5.058b
ga200ts60u 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) 903 1355 v cc = 400v, v ge = 15v q ge gate - emitter charge (turn-on) 125 188 nc i c = 135a q gc gate - collector charge (turn-on) 306 459 t j = 25c t d(on) turn-on delay time 342 r g1 = 27 w , r g2 = 0 w, t r rise time 194 ns i c = 200a t d(off) turn-off delay time 366 v cc = 360v t f fall time 213 v ge = 15v e on turn-on switching energy 12 mj e off (1) turn-off switching energy 16 e ts (1) total switching energy 28 39 c ies input capacitance 20068 v ge = 0v c oes output capacitance 1254 pf v cc = 30v c res reverse transfer capacitance 261 ? = 1 mhz t rr diode reverse recovery time 179 ns i c = 200a i rr diode peak reversecurrent 120 a r g1 = 27 w q rr diode recovery charge 10714 c r g2 = 0 w di (rec) m /dt diode peak rate of fall of recovery 1922 a/s v cc = 360v during t b di/dt = 1300a/s parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 v ge = 0v, i c = 1ma v ce(on) collector-to-emitter voltage 1.8 2.2 v ge = 15v, i c = 200a 1.9 v v ge = 15v, i c = 200a, t j = 125c v ge(th) gate threshold voltage 3.0 6.0 i c = 1.25ma d v ge(th) / d t j temperature coeff. of threshold voltage -11 mv/c v ce = v ge , i c = 1.25ma g fe forward transconductance ? 175 s v ce = 25v, i c = 200a i ces collector-to-emitter leaking current 1.0 ma v ge = 0v, v ce = 600v 10 v ge = 0v, v ce = 600v, t j = 125c v fm diode forward voltage - maximum 3.7 v i f = 200a, v ge = 0v 3.7 i f = 200a, v ge = 0v, t j = 125c i ges gate-to-emitter leakage current 250 na v ge = 20v dynamic characteristics - t j = 125c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
ga200ts60u www.irf.com 3 0.1 1 10 100 0 20 40 60 80 100 120 140 f, fre q uenc y ( khz ) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 120 10 100 1000 0.5 1.0 1.5 2.0 2.5 3.0 v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c v = 15v 80s pulse width ge t = 25 c j t = 125 c j 1 10 100 1000 5.0 6.0 7.0 8.0 9.0 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 25v 80s pulse width ce t = 25 c j t = 125 c j
ga200ts60u 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 2.0 3.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 400 c i = a 200 c i = a 100 c 25 50 75 100 125 150 0 40 80 120 160 200 240 t , case temperature ( c) maximum dc collector current(a) c 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 1 th jc therm al r esponse (z ) t , rectan g ular pulse duration ( sec ) a d = 0.50 0.20 0.10 0.05 0.02 0.01 sin g le pu lse (thermal response) p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c
ga200ts60u www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 10 20 30 40 50 20 25 30 35 40 r , gate resistance (ohm) total switching losses (mj) g v = 360v v = 15v t = 125 c i = 200a cc ge j c ( w ) -60 -40 -20 0 20 40 60 80 100 120 140 160 1 10 100 1000 t , junction temperature ( c ) total switching losses (mj) j r = ohm v = 15v v = 360v g ge cc i = a 400 c i = a 200 c i = a 100 c r g1 =27 w ;r g2 = 0 w 0 200 400 600 800 1000 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 135a cc c 1 10 100 0 10000 20000 30000 40000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c res c oes c ies
ga200ts60u 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - reverse bias soa fig. 13 - typical forward voltage drop vs. instantaneous forward current fig. 14 - typical stored charge vs. di f /dt 0 100 200 300 400 0 10 20 30 40 50 60 70 i , collector-to-emitter current (a) total switching losses (mj) c r = ohm t = 125 c v = 360v v = 15v g j cc ge r g1 =27 w ;r g2 = 0 w 0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 ce safe operating area v = 20v t = 125c ge j v , collector-to-emitter volta g e ( v ) a v ce measured at terminal (peak voltage) 10 100 1000 1.0 2.0 3.0 4.0 5.0 6.0 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 25c t = 125c j j 0 5000 10000 15000 20000 500 1000 1500 2000 f di /dt - (a/s) rr q - (nc) r j j v = 360v t = 125c t = 25c i = 400a i = 200a i = 100a f f f
ga200ts60u www.irf.com 7 fig. 15 - typical reverse recovery vs. di f /dt fig. 16 - typical recovery current vs. di f /dt 75 100 125 150 175 200 225 500 1000 1500 2000 trr - (ns) f di /dt - ( a/ s ) i = 400a i = 200a i = 100a f f f r j j v = 360v t = 125c t = 25c 0 50 100 150 200 250 500 1000 1500 2000 f di /dt - ( a/ s ) rrm i - (a) i = 400a f i = 200a i = 100a f f r j j v = 360v t = 125c t = 25c
ga200ts60u 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+5 s vce ic dt 90% vge +vge eoff = fig. 17b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 17a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 17c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 17d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr vd ic dt vce ic dt ic dt vce ic dt
ga200ts60u www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 18. clamped inductive load test circuit figure 19. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 17e. macro waveforms for figure 18a's test circuit
ga200ts60u 10 www.irf.com case outline int-a-pak world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 3/98 notes: ? repetitive rating; v ge = 20v, pulse width limited by max. junction temperature. ? see fig. 17 ? for screws m5x0.8 ? pulse width 50s; single shot. dimensions are shown in millimeters (inches)


▲Up To Search▲   

 
Price & Availability of GA20TS60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X